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a b s t r a c t

Systems factorial technology (SFT) is a powerful framework for examining how people use multiple
sources of information together. Unfortunately, it is often difficult to apply. Appropriate manipulation
of the salience of each source of information is critical to assessing processing characteristics so a
significant amount of time can be spent piloting to determine the correct levels. Even with piloting,
some participants’ data ends up unusable due to individual differences. We first examine the use of an
accuracy-only adaptation for stimulus levels, based on the Psi method. In some cases a focus entirely
on accuracy may be insufficient, particularly given that response time (RT) is the primary measure with
SFT. Hence, we also introduce an approach to adapting stimulus levels for each individual participant’s
joint accuracy and RT. This will increase the likelihood that salience manipulations will be effective
and that a participant’s data will be usable.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

In many situations, choices and actions depend on multiple
sources of perceptual and cognitive information. As such, one
of the fundamental endeavors in cognitive science is determin-
ing the qualitative properties associated with using those mul-
tiple sources of information. Systems factorial technology (SFT;
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Fig. 1. Predicted survivor interaction contrast for serial, parallel, and coactive models with both OR and AND stopping rules. Corresponding processing schematics
for each class of model are depicted below the SICs.

Townsend & Nozawa, 1995) is a framework based on rigorous
experimental design and nonparametric statistical tools that can
evaluate the underlying processing mechanisms of a system op-
erating on multiple sources of information. While the theory is
quite general and gives clear diagnostic information, SFT is used
by a relatively small number of researchers. One of the reasons
for the limited employment of SFT is that it is often difficult to
implement. In this paper, we address one source of difficulty in
applying SFT, the determination of appropriate stimulus salience
levels. Here, salience refers to the perceptual strength of a stimu-
lus. SFT experiments commonly leverage salience manipulations
to discern how multiple sources of information are processed
together. We endeavor to ameliorate this difficulty by proposing
two approaches for adapting salience levels for each source of
information to the individual subject: one based on task accu-
racy and one based on a joint model of accuracy and response
time (RT). Before detailing these approaches, we first outline the
characteristics of cognitive systems that are of interest to SFT.

Consider a detection task where the operator is asked to make
a button press whenever they hear a tone (auditory signal) or see
a light flash on a display (visual signal). There are various ways
in which the cognitive system may turn the information from the
two signals into a single decision whether to respond. The system
may process both signals simultaneously. Alternatively, it may
first decide whether the auditory signal is present before it pro-
cesses the visual signal (or vice versa). These examples of parallel
and serial processing, respectively, represent two general classes
of models based on their temporal organization or architecture.
Orthogonal to a system’s processing architecture is its stopping
rule. In the current example, the cognitive system may terminate
as soon as it has finished processing either the auditory signal
or the visual signal; this is known as a self-terminating stopping
rule. When only two sources of information are used, it may
also be called a first-terminating (OR) rule. While the stopping
rule is often constrained by task instructions, the task does not
always force a specific stopping rule. In the present example,
the operator may still fully process both the auditory and visual
signals using an exhaustive (AND) stopping rule, even if the
detection of a single signal is sufficient to respond accurately.

In addition to architecture and stopping rule, we may also be
concerned with the independence of each processing channel. In
the previous example, evidence for the presence of the auditory
signal may cause the visual signal to be processed faster (or
slower). In the extreme, evidence for each signal could be pooled
into a common processing channel. This special case of parallel
processing, known as coactive processing, makes only a single
decision so that the question of stopping rule becomes unde-
fined. Schematic diagrams of independent parallel, serial, self-
terminating, and exhaustive models as well as coactive models
are shown in the second row of Fig. 1.

To infer these qualities in cognitive systems, SFT includes a
series of measures. The measures of interest to us in the current

work require the processing speed of each source of informa-
tion to be selectively increased and decreased. This is commonly
achieved by factorially manipulating the salience of each source
of information, colloquially referred to as the double factorial
paradigm (DFP). The assumption is that manipulating the saliency
of each source of information (e.g., loudness, brightness) influ-
ences how fast it is processed. If the salience manipulations
effectively and selectively influence the processing rate of each
corresponding source of information, the resulting response time
distributions will be ordered such that responses on trials where
all sources of information are highly salient will be faster than
responses on trials where some of the sources of information are
less salient. Responses to trials where all sources of information
are relatively less salient should be slower than responses to
trials where one or more sources of information are more highly
salient. Formally, we desire to find stimuli that yield response
time distributions such that SHH (t) < {SHL (t), SLH (t)} < SLL (t),
where ‘H’ reflects a high salience manipulation and ‘L’ reflects
a low salience manipulation. The S(t) are survivor functions,1
which in the present context describe the probability that a
response has not been made by time t . In the earlier example,
SHL (t) is the survivor function estimated for the experimental
condition in which the auditory signal is fairly loud (H) but the
visual signal is relatively dim (L). For more information about
the DFP, its associated trial rates, and how it can be applied to
different kinds of experiments see Fifić and Little (2017) and
Houpt, Blaha, McIntire, Havig, and Townsend (2014).

SFT relies on two measures for inferring the architecture and
stopping rule of a cognitive system. The first, the Mean Interac-
tion Contrast (MIC; Eq. (1)), can discriminate between parallel and
serial processing architectures, and for parallel architectures, it is
able to diagnose stopping rules. The logic behind the MIC is the
same as that of the interaction term in a typical ANOVA where
mean RTs are factorially contrasted. It requires that the process-
ing rate of each source of information be manipulated without
affecting the processing of the other(s) (i.e. selective influence).

MIC =
[
RTLL − RTLH

]
−

[
RTHL − RTHH

]
(1)

In a serial model, the effect of the selective influence ma-
nipulations on the mean RTs are additive such that MIC = 0.
A parallel model predicts a nonzero MIC with self-terminating
models being over-additive (MIC > 0) and exhaustive models
being under-additive (MIC < 0).

In the present paper, we are primarily concerned with the
second measure from SFT, which is related to the first.2 The
Survivor Interaction Contrast (SIC; Eq. (2)) is also based on a
double difference of RTs; however, whereas the MIC is a value,
the SIC is a functional measure, which makes it more informative.
The SIC can be used to discriminate between self-terminating

1 S(t) = 1 − F(t) where F(t) is the cumulative distribution function of t .
2 MIC =

∫
∞

0 SIC(t) dt .
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and exhaustive serial models in addition to the models that
can be discriminated with the MIC. The canonical combinations
of architecture and stopping rule predict distinctive SIC shapes
(Fig. 1). A serial-OR model produces a flat SIC for all t , and a
serial-AND model produces a first negative and then positive SIC
where the area under the curve equals zero. A parallel-OR model
results in an all positive SIC, and a parallel-AND model results in
an all negative SIC. The SIC also conveys some information about
stochastic independence between processing channels (Houpt &
Townsend, 2011; Townsend & Nozawa, 1995). While the previ-
ously described models all assume stochastic independence, a
coactive model produces a first negative and then positive SIC
where the sum under the curve is positive (MIC > 0; see also
Eidels, Houpt, Altieri, Pei, & Townsend, 2011).

SIC(t) = [SLL (t) − SLH (t)] − [SHL (t) − SHH (t)] (2)

Statistical tests for interpreting an individual’s MIC and SIC
exist (Houpt & Fifić, 2017; Houpt, MacEachern, Peruggia, & Town-
send, 2016; Houpt & Townsend, 2010) and are most power-
ful when salience levels are used that maximally separate the
marginal response time distributions for each subject. However,
in practice this is difficult to achieve. Instead, it is more common
to specify a single set of salience levels to use throughout an
SFT experiment for all subjects. The problem with this approach
is that there are low-level perceptual (e.g. acuity) and higher-
level cognitive (e.g. strategy) effects that vary across individuals
such that even with extensive pilot testing one cannot always
determine a single set of intensities that are appropriate for every
subject. This inevitably leads to weakened or inconclusive results
because the differences between response time distributions will
be smaller or undetectable. Worse yet, resources may be wasted
if the experimenter chooses to run additional subjects and discard
the data from subjects who were insensitive to the salience
manipulations. This may even bias the study’s conclusions toward
subpopulations that are sensitive to the chosen salience levels.

To demonstrate the dangers of using a single set of group-
level salience levels when individual differences are present, we
collected some pilot data from a simple visual search task where
participants had to find a target stimulus amongst homogeneous
distractors. We focus on detection accuracy instead of response
times for the sake of brevity, but the lesson still holds. In the
left column of Fig. 2 we examine manipulations of the color
difference between the target and distractors while in the right
column we examine manipulations of the difference in orienta-
tion (i.e. rotation) between the target and distractors. In the top
row we estimate individuals’ probability of responding correctly
as the respective stimulus dimension varies. These psychometric
functions vary not only between people (different colored lines),
but also within the same person on a separate day (same colored
lines). Notice how certain intensities (e.g. distractors rotated 60◦

from target stimulus) are simultaneously too low to be detected
by some individuals yet too high to be missed by others. If we
average the curves in the top row across individuals and session
for each respective stimulus dimension, we can pick high and low
salience levels for the group (depicted by black vertical lines in
the top row of Fig. 2). In the bar graphs in the bottom of Fig. 2,
we plot the expected accuracy of each subject in each session.
For some subjects, these salience levels lead to high accuracy,
but for others they do not. Clearly, a single set of salience levels
will not be effective for this group of subjects. While these results
illustrate the potentially catastrophic effect individual differences
can have in terms of accuracy, the same type of problem can
occur in RTs. The goal of our current effort is therefore to present
a method for choosing individualized salience levels that yield
clear RT differences without sacrificing accuracy. This will high-
light variation across participants while increasing experimental
efficiency.

2. Accuracy focused approaches to determining salience levels

When choosing stimulus intensities for a DFP, we want to
manipulate salience such that the previously discussed survivor
function ordering, SHH (t) < {SHL (t), SLH (t)} < SLL (t), holds.
Naively, one may wish to choose the greatest disparities in
salience possible so as to maximize the chances of statistically
detecting the needed differences; however, one must also be
aware of how the salience manipulations affect accuracy because
we can only use the RTs from correct responses when calculating
SICs. Assuming that accuracy and response times are negatively
correlated, if we choose a very low intensity for a particular
condition, we may reliably increase processing time, but we may
also incur many incorrect responses, which waste experimental
resources because we cannot use these trials. On the other hand,
choosing a higher intensity stimulus may ensure most responses
are correct, but we may still waste experimental resources if
processing is not slowed enough to yield detectable ordering
among the RT distributions. One approach for using accuracy to
determine appropriate salience levels is to choose an intensity
that maximizes accuracy for the high salience condition and then
find a low salience value that compromises on accuracy. For
example, we have previously used 90% (Fox & Houpt, 2016). Other
researchers could choose to use alternative levels depending on
their needs and resources.

A psychometric function maps the intensity of a stimulus
to the probability of responding appropriately. Choosing a fixed
level of accuracy and estimating the corresponding stimulus in-
tensity for an individual provides a way to obtain a similar level
of perceptual difficulty across participants. Accuracy thresholds
are a standard way for controlling individual differences in psy-
chophysics and other areas of experimental psychology.

There are a number of classical methods for determining
thresholds that date back to the earliest days of psychophysics.
One example is the method of constant stimuli, where subjects
make repeated judgments over a discrete number of intensities.
The resulting response rates for each intensity are then treated as
point-estimates of the underlying psychometric function, and a
parametric model such as a Weibull distribution can be fit to the
points so that a continuum of thresholds may be extrapolated.
The method of constant stimuli allows one to be very confident
in the thresholds obtained because there is direct correspondence
between how the psychometric function is estimated from past
responses and how it is used to predict future responses: the
subject is likely to respond at the same rate to a given intensity
regardless of whether the intensity is being used to estimate or
elicit the response rate. A significant shortcoming of the method
of constant stimuli is that it requires many trials to confidently
measure the response rate at a particular stimulus intensity
because responses must be averaged. Furthermore, multiple stim-
ulus intensities are needed to fit a full psychometric function, but
not all of the intensities sampled will be equally informative. In
short, the method of constant stimuli is very inefficient.

An alternative approach is to use any one of various adaptive
psychophysical methods that use an algorithm to intelligently
sample informative stimulus intensities. Probably the most well-
known nonparametric adaptive method is the truncated staircase.
The standard staircase (called a 1-up 1-down staircase) targets
the 50% threshold. On each trial if the subject responds posi-
tively (negatively) then the next trial is placed at one step lower
(higher) in stimulus intensity. When a reversal occurs (a change
from responding positively to negatively or vice versa), the step
size is reduced, usually by half. The experimenter determines
step sizes, and the most common stopping rule for staircases is
the number of reversals. The advantage to staircase methods is
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Fig. 2. Psychometric functions (top row) by subject and session for a visual search task where participants utilize either color (left column) or orientation (right
column) to detect a target among distractors. Vertical black lines indicate the 99% threshold (high salience) and 90% threshold (low salience) obtained by averaging
over psychometric function location and slope parameters for each subject and session. The bottom bar plots depict the accuracy predicted for each subject in each
session when these high and low salience intensities are used. Notice that the single set of group level intensities causes poor performance in one or both salience
conditions for some subjects, while for others it produces ceiling performance in both salience conditions.

that they are relatively easy to set up and run. However, merely
targeting the 50% threshold is not ideal for estimating a subject’s
SIC as half of the low saliency trials (on average) will be incorrect
and discarded.

Methods for expanding the staircase method to target differ-
ent thresholds have been developed and used with success. Levitt
(1971) proposed a transformed staircase that uses a set of previ-
ous trials to determine when to change the stimulus intensity.
By triggering reversals after a particular sequence of repeated
responses, the transformed staircase method is able to target a
limited, discrete set of thresholds. A common example of this,
the 1-up 2-down staircase, targets 70.7% accuracy. However, each
targeted level of accuracy requires more trials to estimate it the
further it is from 50%. In order for a transformed staircase to con-
verge on 90.6% accuracy, reversals would need to occur following
every negative response and after a sequence of seven positive

responses.3 If one wishes to target any arbitrary threshold they
can use a method proposed by Kaernbach (1991). This weighted
up–down method transforms the step sizes themselves instead
of transforming the number of responses needed before taking a
step. The step sizes are adjusted according to the formula δU =

δD(1−ϕ)/ϕ where δU is the up-step size, δD is the down-step size,
and ϕ is the targeted threshold. The weighted staircase method
works well for thresholds near 50%, but like the transformed
method it too becomes unwieldy at extreme threshold values:
in order to obtain a 90% threshold the down-step size becomes
nine times the up-step size. One can see how these sporadic
jumps in step size might alert the subject to the purpose of
the psychophysical experiment, compromising the validity of the

3 In Levitt (1971)’s notation, the probability of a sequence for the down group
is [P(X)]7 = 0.5, which corresponds to the probability of a positive response:
P(X) = 0.906.
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threshold obtained. Rammsayer (1992) suggested that interleav-
ing multiple such staircases might diminish the chance of their
realization, but he was also quick to point out that doing so would
eliminate any efficiency the experimenter would gain by using
adaptive methods.

A popular alternative adaptive method, based on parametric
assumptions about the psychometric function, is QUEST (Watson
& Pelli, 1983). QUEST uses Bayes’ rule to combine the information
from all previous trials with any prior information the exper-
imenter may have about the psychometric function (e.g., from
previous research, pilot subjects, etc.). It then places the next
trial intensity at the most likely threshold value. Watson and
Pelli (1983) outline procedures for terminating QUEST when a
certain confidence interval has been achieved; they also suggest
that the procedure may be terminated after a set number of trials.
QUEST converges quickly, and Watson and Pelli (1983) report an
efficiency of 84% over 128 trials.4

QUEST relies on a prespecified functional form for the psycho-
metric function (the Weibull distribution is a common choice).
Parameterizing the psychometric function like this requires the
experimenter to assume the values of some terms, making the
overall implementation more difficult than nonparametric pro-
cedures like the staircase method. There are four parameters
needed to specify the psychophysical model: a guess parameter
γ determines the chance level of performance and is typically
defined by the type of task (e.g. γ = 0.5 for two alternative
forced choice); a lapse parameter δ defines the negative response
rate at maximum intensity, and its complement (1 − δ) deter-
mines the accuracy ceiling; a location parameter α determines
the placement of the psychometric function along the stimulus
intensity axis; and a slope parameter β determines how quickly
performance goes from chance to ceiling. QUEST estimates the
location parameter and requires the experimenter to choose slope
and lapse parameters from other sources. This is a problem for us
because we wish to use high accuracy thresholds, which will be
strongly affected by the choice of slope parameter. Furthermore,
the slope parameter may vary by subject. Because QUEST does not
provide a way for estimating individualized slopes, it may not be
the ideal candidate for pairing with SFT.

Another alternative is the Psi method (Kontsevich & Tyler,
1999). Like QUEST, Psi is a parametric Bayesian method that is
able to incorporate prior knowledge about the psychometric func-
tion from previous research and information from all previous
trials. Unlike QUEST, Psi provides estimates of both location and
slope parameters. It does so by constructing a matrix of possible
location and slope values the experimenter believes to include
the true location and slope pair, then estimating the probability
that each pair is the true pair using Bayes’ rule. On each trial, the
expected entropy of each possible stimulus intensity is calculated
and the intensity corresponding to the minimal entropy is se-
lected for testing. This is different from QUEST because instead of
the most likely threshold being tested next, the intensity that will
provide the most information about the psychometric function is
tested next. The resultant location and slope pair is finally deter-
mined using expected a posteriori estimation once a termination
criterion is reached. Kontsevich and Tyler (1999) acknowledge
that confidence level testing can be used to determine when to
terminate the Psi method, but they recommend terminating after
a set number of trials to both ensure that the subject’s effort
is evenly distributed and provide certainty to the experimenter
of when the search will end. This last assurance is important to
the overall efficiency of the adaptive SFT experiments we wish

4 Compare to 40%–50% for the PEST procedure (Taylor & Creelman, 1967),
which is not discussed in this paper because it accomplishes the same as QUEST
but with lower efficiency.

to conduct because obtaining the most precise threshold possible
is not the focus; the focus is to quickly determine useful values
for the saliency conditions of the SIC experiment. Kontsevich and
Tyler (1999) report that Psi typically requires less than 30 trials
to accurately estimate location and around 300 trials to estimate
both location and slope.

Like QUEST, Psi leaves the lapse parameter to be set by the
experimenter; however, this is a much smaller problem than
unaccounted for individual variability in the slope parameter. The
majority of lapses typically occur in the first few trials as the
subject settles into the task, and Kontsevich and Tyler (1999)
recommend excluding these trials to reduce the lapse rate. One
could think of these early trials as practice. After the reduction
is performed, lapse rates should be small even at conservative
values, and thus any variance in δ across individuals is most likely
negligible. For this reason, it should not be a problem to specify a
single (even conservative) error rate for the experiment popula-
tion. Because of Psi’s ability to quickly and efficiently estimate the
parameters of the psychometric function that will most greatly
vary by individual, it seems to be suitable for pairing with SFT.5

3. Joint RT–accuracy approaches to determining salience lev-
els

While the Psi method can be used to determine accuracy-
based salience levels, it does not take into account RT, which is
ultimately the measure required for the SIC. One clear approach
to using RT is to mimic the approach taken for accuracy: as-
sume a parametric form for the relationship between salience
and RT (i.e., the chronometric curve) then estimate the param-
eters of that function using either an offline method (method of
constant stimuli) or adaptive procedure. The range of candidate
salience levels from the accuracy-focused and RT focused results
can then be combined. This approach was used for group level
salience by Blaha, Houpt, McIntire, Havig, and Morris (manuscript
in preparation). RT and accuracy are rarely assumed to be inde-
pendent measures, so the relationship between stimulus salience
and accuracy and the relationship between salience and RT are
likely mutually informative. Furthermore, looking at the combi-
nation of response time and accuracy eliminates the bias due to
variation in speed–accuracy trade-off across individuals and con-
ditions. This combination also allows for a joint criteria threshold
of speed and accuracy such that the model estimates what the
best stimulus intensity level is for an individual to obtain a de-
sired level of accuracy and response time. This can be particularly
useful in the SFT paradigm as accuracy levels must remain high
(e.g. ≥ 90%) while response times are manipulated.

There are multiple well-known models for jointly evaluating
RT and accuracy. Perhaps the most well known is the drift–
diffusion model (DDM) originally proposed by Ratcliff (1978, see
also Stone, 1960). This model assumes the choice process can
be represented by a biased diffusion process that leads to a
response whenever the diffusion hits a boundary of a prespec-
ified region. The choice is specified by the particular boundary
reached by the diffusion and the RT is specified by the amount of
time taken to reach the boundary (an additional random variable
meant to indicate perceptual and motor processes is usually
included). The magnitude of the bias of the diffusion represents
the relative amount of information indicating a response in the
biased direction. The distance the diffusion must travel to reach
a boundary represents cautiousness. Indeed, this model has even

5 It is worth noting that Psi has recently been generalized to handle
multidimensional psychometric functions and additional trial outcomes. The
advanced method, known as QUEST+ (Watson, 2017), may prove useful in future
applications of our methodology.
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been applied in similar circumstances to parametrically map be-
tween signal intensity and the strength of the perceptual infor-
mation (e.g., Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann,
2012; Murphy, Vandekerckhove, & Nieuwenhuis, 2014).6

Because our goal is to simplify the data collection process
for SFT, we would ideally avoid a large number of trials and
additional selective influence manipulations tangential to the
estimation of the SIC. We chose to use a more streamlined joint
RT–accuracy model, the log-normal race model (LNRM; Rouder,
Province, Morey, Gomez, & Heathcote, 2015). Many joint RT–
accuracy models are directly concerned with relative variation in
specific parameters. For this application, we are not interested in
the latent parameters per se, thus the distinction among effects
on average drift rate, threshold, and bias are less of a concern.
The LNRM sacrifices these distinctions in favor of reduced com-
putational complexity (in contrast with Mulder et al., 2012). The
LNRM models the response process as a race between random
variables representing the time that it would take to choose each
of the available options. Whichever option is the fastest on a
trial is the observed choice. For example, with two choices, a
and b, the LNRM would associate a random variable with the
time to respond to each, Ta and Tb. On any trial on which an
observation of Ta is smaller than Tb, the model responds a; on any
trial on which an observation of Tb is smaller than Ta, the model
responds b. The response time is modeled as the time taken by
the fastest choice plus an additional variable (ψ) that does not
depend on the choice which represents the time taken by non-
decision processes (e.g., executing the response once a choice is
made). Given this setup, the joint distribution of choice a and
response time t is given by

f (a, t;µa, µb, σa, σb) = g(t − ψ;µa, σa) [1 − G (t − ψ;µb, σb)] .

The final core assumption of the LNRM is that the choice du-
ration random variables have log-normal distributions. With Φ()
indicating the standard normal cumulative distribution function,

g(t;µ, σ ) =
1

tσ
√
2π

exp
[
−

(ln t − µ)2

2σ 2

]
G(t;µ, σ ) = Φ

(
ln t − µ

σ

)
.

One of the strengths of the LNRM indicated by Rouder et al.
(2015) is that the µ parameter can be used to build additional
complexity into the model, particularly with respect to the rela-
tionship between the stimulus and the choice and response time
probabilities.7 For example, µa − µb could be modeled with an
increasing function of the evidence in favor of a to represent the
increasing probability of choosing a and the higher probability of
faster responses.

For our purposes, we would like to approximate the relation-
ship between salience and the difference between the correct and
incorrect µ parameters. Given this relationship, we can then use
the inverse of that relationship to estimate the stimulus level that
would lead to a targeted level of performance.

6 A frequently used alternative accumulator model is the linear ballistic
accumulator model (LBA; Brown & Heathcote, 2008), which has the same
general form, but replaces the diffusion process with a linear information change
over time. This linear form leads to an analytically simpler model. Because
neither RT nor accuracy directly inform the instantaneous properties of the
information accumulation process, the LBA and drift–diffusion models often
make similar predictions and lead to similar qualitative conclusions (Donkin,
Brown, & Heathcote, 2011). Unfortunately, both the drift–diffusion model and
the LBA tend to require a large number of trials and parameter-specific selective
influence manipulations to identify parameter values.
7 The σ parameter could also be used to model the influence of experimental

variables; however, we do not explore that option herein.

4. Summary of our approach

Experiments utilizing the SFT methodology are inherently
time consuming because the functional statistics employed oper-
ate on distributions of RTs, and many observations (trials) need to
be collected in order to sufficiently estimate these distributions.
As highlighted previously, this presents a considerable sunk cost
when subjects must be excluded or replaced before analysis
because of variability in their sensitivity to the experimental ma-
nipulations. Our proposed solution is to first fit a psychophysical
model to each subject and then use the thresholds recommended
by the model as salience levels in the SFT experiment; however,
a similar concern regarding the duration of an experimental
session arises when one considers that this approach requires
additional observations to be collected on top of the many needed
to calculate the SFT statistics. We have attempted to address this
catch by proposing the use of powerful adaptive methods that are
able to quickly estimate a subject’s psychometric function from
relatively few trials.

In the following sections, we demonstrate the use of two
different methods that a researcher may consider taking within
our general procedure. The first is the Psi method (Kontsevich
& Tyler, 1999), which has been in use for nearly twenty years
and is available in multiple open-source and commercial software
packages (e.g., Python, MATLAB, etc.). The second is the lognormal
race model (Rouder et al., 2015), which is based on a more
complex model than the Psi method, but has the advantage of
using RT and accuracy jointly.

We first conduct a series of simulations to show the asymp-
totic performance of these approaches. By tracing the conver-
gence of each psychophysical models’ parameters as a function
of the number of trials, we identify recommended practices and
characterize the efficacy a practitioner may expect if they were
to use fewer (or more) trials. We then use our recommendations
to conduct a simulated DFP study and examine the sensitivity of
the methods to individual differences.

We next perform an experiment with human subjects as a
proof of concept. At the beginning of each experimental session,
participants complete a psychophysical block and then complete
a visual search task in a DFP using salience values extracted
from the respective psychophysical model. Whereas the simula-
tion study represents the ideal way to administer our proposed
method, we recognize that SFT studies are typically conducted in
environments where participants are recruited and compensated
based on one hour sessions. We thus design the human study to
include these practical limitations and use a minimally reason-
able number of trials in order to describe the robustness of our
approach to the sub-optimal conditions in which it is more likely
to be used.

5. Simulations

We use simulation data to demonstrate the application of
the accuracy-only and the joint RT–accuracy approaches to a
SFT study. To stand in for human subjects, we use an R imple-
mentation of the DDM (Molenaar, Tuerlinkcx, & van der Maas,
2015; Ratcliff, 1978) to generate choice and RT data. We explicitly
do not want the generating model to match the measurement
models underlying the analyses because it is quite likely that
human performance is not in perfect agreement with the mea-
surement models. We want to show that even with a mismatched
model, the recommended salience levels lead to improved SFT
testing. All simulation code is available at https://github.com/
jhoupt/adaptiveSFT.

For the DDM, we set the mean drift rate ξ to be a deterministic
function of the stimulus intensity and a scaling parameter z.

https://github.com/jhoupt/adaptiveSFT
https://github.com/jhoupt/adaptiveSFT
https://github.com/jhoupt/adaptiveSFT
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Fig. 3. Convergence of the Psi psychometric function parameters across trials. The upper dashed line indicates the upper ninety-fifth percentile and the lower dashed
line indicates the fifth percentile. The solid line is the mean estimate across models.

Specifically, ξ = z × intensity. All other model parameters
are fixed. We sample stimulus intensities differently for each
approach during the psychophysical blocks.

The application of the Psi approximation to the DDM used the
following sequence:

1. Psi generated an initial stimulus intensity x0 based on the
specified prior.

2. A single trial from the DDM was sampled with the fixed
parameters and drift rate ξ = zxi.

3. The accuracy of that single trial was fed into the Psi al-
gorithm, which in turn updated the posterior distribution
over the Psi parameters accordingly.

4. The updated posterior was used to determine the most
informative new intensity level

5. Steps 2 through 4 were repeated for the specified number
of trials.

The application of the LNRM followed a slightly different pat-
tern:

1. For each sample stimulus intensity xi, n response times
and choices were simulated from the DDM with the fixed
parameters and ξ = zxi.

2. The posterior distribution of the LNRM parameters was
then estimated using Stan (Carpenter et al., 2017).

We first examine the rate of parameter convergence for each
of the approaches. These values can help to guide researchers
on the number of trials needed to calibrate the stimuli for an
individual to be used in a DFP study. Next, we use the salience
levels estimated by the psychophysical approaches to simulate
a DFP for each of the combinations of architecture and stopping
rule discussed before (Fig. 1). We also use random perturbations
of the DDM parameters to simulate variation across individuals.
Lastly, we provide guidelines to the practitioner for using each
method.

5.1. Parameter convergence

5.1.1. Psi
We initialized the DDM with the following parameter values:

starting point = 0, drift scaling parameter (z = 1.60), variabil-
ity of the accumulation process (s = 0.25), non-decision time
(ter = 0.10), and symmetrical upper and lower decision bound-
aries (a, b; (a − b)/2 = 1.45). We verified that the DDM with
these parameters generated RTs that were qualitatively similar
to typical human RT distributions.

We ran 500 simulations of the DDM through 300 trials of
a psychophysical task using Psi with a fixed lapse parameter8

8 See the earlier discussion of assuming conservative lapse rates in Section 2.

Fig. 4. Convergence of the Psi psychometric function across trials. This function
maps stimulus intensity to the probability of a correct response. The estimate
better approximates the true probability of a correct response for a given
intensity as the number of trials increases from 1 (red) to 300 (blue).

(δ = .01). On each trial of each simulation we extracted Psi
location (α) and slope (β) parameters and estimated a psycho-
metric function. We evaluated the rate that the location and
slope parameters stabilized in Fig. 3. The left plot indicates Psi
overcame the initialization bias after about 25 trials and obtained
stable estimates of the true location parameter (red dashed line)
after 75 trials. The right plot in Fig. 3 illustrates that Psi took
longer (∼40 trials) to recover from initialization bias in the slope
parameter such that stabilization occurred after about 150 trials.9
Fig. 4 shows the joint convergence of the psychometric function.
As expected, estimates were more accurate as the number of
sample trials increased.

5.1.2. LNRM
We generated data from the DDM using the method of con-

stant stimuli, then fit the LNRM to these data to examine the
relationship between precision and number of trials. To deter-
mine stimulus salience levels for the DFP, the most important

9 Kontsevich and Tyler (1999) originally found the slope parameter to require
300 trials to be accurately estimated, and they suggest that this efficiency may
depend on the validity of the assumed lapse rate.
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Fig. 5. Convergence across trials of the latent parameters of the LNRM function mapping the difference between average completion time of the competing response
processes. The upper line indicates the ninety-fifth percentile and the lower line indicates the fifth percentile of the posterior distribution. Dashed lines give quantities
from each simulation. The solid line is a smooth curve fit to those values.

parameters are those that map between the input salience and
the difference between the mean completion times of correct and
incorrect racers. For this paper, we assume this mapping follows
a logistic function,

zcorrect(x) − zincorrect(x) =
L

1 + exp (−k(x − x0))
. (3)

Here L represents the maximum difference between the racers
which should be set based on the scale of the response times in
the task. The DDM parameters we used led to response times on
the order of a few seconds, so we fixed L to 10. The midpoint
parameter, x0, determines the salience level at which the rate
difference is half-way to its maximum (i.e., when L = 10,
zcorrect(x0) − zincorrect(x) = 5). This parameter and the precision
of the prior should depend on the scale of the stimulus intensity
that will be used. When the stimulus intensity is normalized, a
standard normal prior is appropriate for the midpoint. The slope
parameter, k, determines the rate of increase of the difference
between the correct and incorrect racers, where higher k corre-
sponds to faster increases. As a rate parameter, this depends on
the ratio of the response time scale to the stimulus intensity scale,
and thus the priors precision should be set correspondingly. We
used a half-normal prior with mean 0 and standard deviation 2.

Fig. 5 indicates the rate of convergence of the posterior dis-
tribution over the parameters mapping stimulus salience to drift
rate separation. Each plot shows the fifth and ninety-fifth per-
centile of the posterior distribution for simulated data with one
to 300 trials at each of ten stimulus intensity levels. Note that this
implies the total number of trials is ten times the number indi-
cated on the x-axis, meaning the axes are not directly comparable
to the accuracy-only approach. Because distinct simulated data
was used for each number of trials, the functions are not smooth,
although we overlay the quantiles with a smoothed function to
indicate the general trend. For both parameters, the posterior pre-
cision, indicated by the distance between the quantiles, improves
rapidly at first, then stabilizes around 50 trials. This indicates that,
when a researcher has only a vague idea of what the parameter
values will be and generic priors are used, that 50 to 100 trials per
stimulus level (500 to 1000 total) should be targeted. In situations
where more prior information is available, such as from pilot
testing or other subjects, fewer trials are likely sufficient. Other
factors, such as the overall variability of the participants’ response
times may also influence the convergence, so this number should
be considered a heuristic estimate.

5.2. DFP simulation study

5.2.1. Psi
In order to simulate a DFP, we need to obtain high and low

salience levels for each of the two stimulus dimensions of in-
terest. For the low salience levels, we used the 90% thresholds

recommended by Psi. For the high salience levels, we chose to use
the maximum physical intensity of the stimulus. This promotes
peak performance in the case that accuracy plateaus before RT
has been minimized. Of course, one could always set the high
salience level based on the psychometric function estimated by
Psi at no additional cost, but this intensity would be limited to
the threshold corresponding to (1 − δ).

Using the DDM from the previous section as our observer
model, we first simulated 100 psychophysical trials using the Psi
method for each of the two stimulus dimensions and extracted
thresholds to use as low salience intensities. We then simulated
100 trials for each of the critical DFP conditions: HH, HL, LH, and
LL; for each potential combination of architecture and stopping-
rule: parallel-OR, parallel-AND, serial-OR, and serial-AND.

Before attempting to interpret a SIC, we must first confirm
that the salience manipulations effectively and selectively in-
fluenced the corresponding cognitive processes. While this is
necessarily the case for our simulations, direct tests of selec-
tive influence can be difficult with humans. The standard ap-
proach is to test for a necessary condition of selective influence,
the aforementioned survivor distribution ordering: SHH (t) <
{SHL (t), SLH (t)} < SLL (t). Because our accuracy-based approach
relies on an assumed relationship between accuracy and RT, it is
even more crucial that we verify that the salience manipulations
led to the expected differences in RT distributions. We used the
Kolmogorov–Smirnov null hypothesis test to compare each pair
of survivor functions and found significant statistics indicating
the appropriate ordering for all models. Accuracy also correlated
with salience as expected. We plot the survivor functions and SICs
corresponding to each model in Fig. 6. Compare these results to
the examples in Fig. 1.

Next, we conducted statistical tests of the SIC. Following the
recommendation of Houpt and Burns (2017), we use α = .33.
Parallel-OR and serial-AND models produced significantly posi-
tive deviations from zero, parallel-AND and serial-AND models
produced significantly negative deviations from zero, and the SIC
generated from the serial-OR model did not significantly deviate
from zero. Hence, the simulations produce the characteristic
SIC functions for each standard model as expected (compare to
Fig. 1).

Now confident that our approach will recover the architecture
and stopping rule of a single parameterization of the generating
model, we varied the previously fixed parameters of the DDM to
simulate variation across individuals and repeated the previous
procedure. We generated data from ten distinct sets of DDM pa-
rameters, representing ten unique subjects, for each combination
of architecture and stopping rule. DDM parameters varied such
that: a, b; a−b ∈ [2.77, 3.90], z ∈ [1.72, 2.79], ter ∈ [0.07, 0.13]).
We fixed the variability of the accumulation process (s = 0.20).
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Fig. 6. Simulated survivor and SIC functions using the salience levels suggested by Psi. Models were constructed using each combination of parallel/serial architecture
and self-terminating (OR)/exhaustive (AND) stopping rules.

We simulated 100 trials for each condition in the DFP as before
and analyzed the data using the sft package (Houpt et al., 2014)
in R (R Core Team, 2017).

For each generating model below, the survivor functions of all
ten ‘‘subjects’’ were ordered appropriately according to a series
of pair-wise Kolmogorov–Smirnov tests. That is, we can reject
the null hypotheses that SLL (t) < {SLH (t), SHL (t), SHH (t)} and
SHH (t) > {SHL (t), SLH (t), SLL (t)}. Therefore, we can interpret the
SIC and MIC of each subject.

For the parallel-OR models, the statistics for the positive ex-
tent of the SIC (D+) ranged from 0.109 to 0.575. All were above
the critical value for the SIC null-hypothesis test at α = .33, and
all but two were significant at α = .05. The statistics for the
negative part of the SIC (D−) ranged from 0.0 to 0.109. Only one
was significant at α = .33, and none were significant at α = .05.
The MIC was significantly positive for all cases at α = .33, nine
of which were significant at α = .05.

For the parallel-AND models, the statistics for the negative
extent of the SIC ranged from 0.145 and 0.551. All were above
the critical value at α = .33, and eight were significant at
α = .05. The statistics for the positive extent of the SIC ranged
from 0.029 to 0.081. None were significant at α = .33. The MIC
was significantly negative for all 10 cases at α = .05.

For the serial-OR models, the statistics for the positive extent
of the SIC ranged from 0.024 to 0.132. Two were significant at
α = .33, and none were significant at α = .05. The statistics
for the negative extent ranged from 0.034 to 0.124. One was
significant at α = .33 but not at α = .05. The MIC was
significantly different from zero for eight at α = .33, two of which
were also significant at α = .05.10

For the serial-AND models, the statistics for the positive extent
of the SIC ranged from 0.027 to 0.183. Four were significant at
α = .33, two of which were also significant at α = .05. The
statistics for the negative extent ranged from 0.151 to 0.495. All
but two were significant at α = .05, but all were significant at
α = .33. The MIC was significantly different from zero for six at
α = .33, five of which were also significant at α = .05.

5.2.2. LNRM
Using the same simulation approach as above, with the DDM

drift rate given by an affine transformation of the stimulus inten-
sity, we simulated each architecture/stopping-rule combination

10 The null hypothesis test used for the SIC (Houpt & Townsend, 2010)
is stronger than the Adjusted Rank Transform (ART) test used for the MIC,
Leys and Schumann (2010) and Reinach (1965). Whenever the two measures
disagree, we defer to the SIC results.

when salience levels for the DFP were estimated with the LNRM.
The basic process was similar to the parameter convergence
simulations above. We first generated data from the DDM at a
preselected set of stimulus intensity levels, then fit the LNRM
to estimate the mapping between stimulus intensity and LNRM
mean separation. Once an estimate of the mapping was ob-
tained, we then inverted the mapping to estimate the appropriate
salience levels to achieve a prespecified difference in mean sep-
aration for the high salience and low salience trials. In these
simulations, we used a separation of zcorrect − zincorrect = 8 for
high salience trials and 1.3 for low salience trials.

For the four standard models (parallel-OR, parallel-AND, serial-
OR, serial-AND), we estimated the high and low salience levels
with 100 trials at each of 10 salience levels. This yielded a high
salience level of 1.71 and a low salience level of 0.580. Thus, for
the DFP simulation, each subprocess was simulated with a drift
rate ξhigh = 1.71z for high salience trials and ξlow = 0.580z
for low salience trials. The other parameters were fixed at the
following: decision bounds (a − b)/2 = 3, z = 2, base time
ter = 0.1, and standard deviation of the drift s = 0.2. We used
100 trials per each combination of the salience levels to estimate
the survivor functions and SICs. The simulations produced the
characteristic survivor and SIC functions for each standard model
as expected (compare Fig. 7 to the examples in Fig. 1.). These
results are nearly identical to those produced by our simulations
using the Psi method.

Next, we simulated data approximately following a typical
SFT study. We generated data from ten distinct sets of DDM
parameters, representing ten unique subjects, for each combina-
tion of architecture and stopping rule. Parameters were drawn
from truncated normal distributions with means set based on
the example simulations above, with the exception of a higher
mean threshold (3.3) and mean drift rates set to have a drift
rate to threshold ratio equal to that of the example models.
Standard deviations were 1/8 the mean for all parameters, and
distributions were truncated at zero. For each subject, 100 trials
were simulated from each combination of salience levels. Data
were analyzed using the sft package (Houpt et al., 2014) in R (R
Core Team, 2017).

The first simulation was based on a parallel-OR system. Of the
ten simulated subjects, none had statistically significantly misor-
dered survivor functions, and only two did not reach statistically
significantly ordered distributions for all pair-wise Kolmogorov–
Smirnov tests. These two subjects’ survivor functions were still
ordered appropriately upon visual inspection so we interpret
them with the others. The statistics for the positive extent of the



10 J.J. Glavan, E.L. Fox, M. Fifić et al. / Journal of Mathematical Psychology 92 (2019) 102278

Fig. 7. Example survivor functions and SICs from a simulated DFP for each combination of stopping rule and architecture. Salience levels for the DFP were determined
based on fitting a lognormal race model to data generated with a drift–diffusion model.

SIC ranged from 0.240 to 0.660. All were above the critical value
for the SIC null-hypothesis test at α = .33, and only one was not
significant at α = .05. The statistics for the negative part of the
SIC ranged from 0.002 to 0.122. None were significant at α = .33.
The MIC was significantly positive for all 20 cases at α = .05.

For the parallel-AND models, none of the survivor functions
were significantly misordered, and only two were not signifi-
cantly ordered. They were still visually ordered appropriately. The
statistics for the negative extent of the SIC ranged from 0.340
to 0.609. All were significant at α = .33. The statistics for the
positive extent ranged from 0.011 to 0.141. None were significant
at α = .33. The MIC was significantly negative for seven at
α = 0.33, three of which were also significant at α = .05.

For the serial-OR models, all but one subject passed the sur-
vivor function ordering tests. That one was visually ordered
appropriately and not statistically significantly misordered. The
statistics for the negative part of the SIC ranged from 0.030
to 0.211. Three were significant at α = .33, but none were
significant at α = .05. The statistics for the positive extent ranged
from 0.011 to 0.284. Two were significant at α = .05. The MIC
was significantly different from zero for nine at α = .33, six of
which were also significant at .05.

For the serial-AND models, all distributions passed the sur-
vivor function ordering tests. The statistics for the negative part
of the SIC ranged from 0.208 to 0.659. One was not significant at
α = .05, but all were significant at α = .33. The statistics for the
positive extent ranged from 0.093 to 0.266. Seven were significant
at α = .33, two of which were also significant at α = .05. The
MIC was significantly different from zero for five at α = .33, two
of which were also significant at α = .05.

5.3. Discussion of simulations

We used a drift–diffusion model to simulate human subjects
in a perceptual decision making task. We used our model of the
human to evaluate the convergence of parameters in each of our
psychophysical models. We then simulated a full adaptive DFP
study by estimating high and low salience values from either
the accuracy-only or joint RT–accuracy methods and then using
those values to estimate the respective SICs and MICs. Our efforts
revealed that both methods led to adequate survivor function
orderings, indicative of selective influence, and we successfully
recovered the appropriate generating architecture and stopping
rule for each virtual subject.

The Psi method and the LNRM method achieved nearly iden-
tical outcomes in our simulations. The number of trials needed

to sufficiently fit the underlying psychophysical models was the
primary difference between them. The Psi algorithm strategically
chooses the next stimulus intensity to test based on the responses
made so far, picking the intensities that will be most informative
for estimating the model’s parameters. In our joint RT–accuracy
approach, we had to first collect data using the method of con-
stant stimuli before fitting a LNRM. In this regard, the latter
approach is much less efficient: despite using two sources of
information, it does not collect the data in an optimal manner.

Based on our simulations, 100 to 150 trials for each stimulus
dimension should be sufficient for the Psi method and 50 to 100
trials per level of intensity (500 to 1000 total) per dimension
when using the LNRM approach should be sufficient. As stated
above, these estimates are influenced by the specifics of our
simulation, so the numbers should be considered approximate.
Assuming 4 s per trial on average, Psi would need 15 to 20 min
to complete both psychophysical blocks, whereas the LNRM ap-
proach would need 1 to 2 h. Hence, the accuracy-based approach
is generally more practical, although one could drastically im-
prove the efficiency of either method by specifying an informative
prior distribution over the model parameters. It may also be
possible to get away with using fewer than the above recom-
mended number of trials. For example, we recommend using 150
trials for Psi because that is how many trials it takes for the
slope (beta) parameter to converge, but after 40 trials both model
parameters have overcome their initialization bias. At this point
the psychophysical model fit may not be the best that it could
be, but it may be good enough to set usable salience levels for
the DFP. In the following section, we conduct a study with human
subjects using far fewer trials (25 trials for Psi and 5 repetitions
of 10 levels (50 trials total) for LNRM) and demonstrate that both
methods remain fairly successful.

There is one substantial situation in which the experimenter
should favor the joint RT–accuracy approach over the accuracy-
only approach. The accuracy-only approach relies on the assump-
tion that accuracy and response latency are negatively correlated
with respect to stimulus salience — as salience decreases, accu-
racy decreases and RT increases. If this relationship was disrupted
(e.g., by changing strategies) or relatively weak (e.g. so that ac-
curacy would need to be sacrificed to an unacceptable degree
to obtain sufficient RT differences), then the accuracy-only ap-
proach will fail. One should be especially wary of under motivated
subjects and make sure that the task instructions are clear and
consistent in their emphasis on speed vs. accuracy.
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6. Demonstration with human subjects

6.1. Method

Having demonstrated the adaptive SFT experiment using the
simulations above, we now set out to showcase the Psi and LNRM
techniques with human subjects. Unless otherwise noted, the
methods underlying the two conditions are exactly the same. The
task we chose to use for the human study is adapted from our
previous work with visual search (Glavan, Haggit, & Houpt, 2019).
Subjects have to determine the presence of a target defined by
two features, here color and orientation. On each trial, distractors
are presented that differ from the target along one or both feature
dimensions. We manipulate salience by adjusting the degree of
dissimilarity between the target and distractors. The reader may
notice that we collect fewer trials from the human subjects than
we used in our simulations. Whereas the goal with the simula-
tions was to propose recommendations for ideal conditions, in
the current section we attempt to demonstrate the effectiveness
of our techniques under more realistic time constraints.

6.1.1. Participants
We recruited eight undergraduate students to participate in

the study, half of whom were assigned to the Psi condition and
the other half to the LNRM condition. Each subject completed
two one-hour sessions administered over consecutive days and
was awarded class credit as compensation for their time. The
study was conducted at Wright State University and approved
by its Institutional Review Board. All participants gave written
informed consent before beginning the study and indicated that
they had normal or corrected to normal color vision and hearing,
unencumbered use of both hands, and no history of epilepsy or
brain trauma.

6.1.2. Materials
We conducted the study in a dark room (i.e. lights off, door

shut, no windows, etc.) to control ambient light levels. We pre-
sented the task using PsychoPy (Peirce, 2009) on a 20′′ Sony
Trinitron monitor positioned 90 cm from the edge of a table at
which the participants sat. The display spanned 40.5 cm (25.361
degrees of visual angle) across and 30.5 cm (19.234 degrees of
visual angle) in height with a resolution of 1280 × 1024 pixels.
Participants responded using the computer’s optical mouse.

Each stimulus consisted of a circle with a line through its
center, similar to the international prohibition sign that readers
may recognize from ‘‘no parking’’ or ‘‘no smoking’’ signs. The
diameter of each stimulus was 0.700 degrees of visual angle, and
all line orientations are reported in degrees of counterclockwise
rotation from horizontal.

The target was always red with 45 degrees of tilt. The choice of
color was somewhat arbitrary, but it gave some connection to our
prior work (Glavan et al., 2019). We chose to use an oblique angle
to avoid the facilitation observers exhibit at completely vertical or
horizontal (i.e. cardinal) orientations (Appelle, 1972).

We parameterized the color of our stimuli using the CIELAB
color space in order to better correspond to human perceptual
properties. This allowed us to control luminance by fixing the L
parameter at 50. We also fixed the a parameter, which controls
the green–red component, at 110. We manipulated the b param-
eter, which controls the blue–yellow component, to yield more
red-like stimuli at higher values and more magenta-like stimuli
at lower values.

Because PsychoPy does not currently support CIELAB, we
translated code from Ruzon (2009) into Python to convert be-
tween CIELAB and RGB color spaces. This code is available at
https://github.com/jhoupt/adaptiveSFT, along with all the other
code described in this article.

The color used for targets was (L = 50, a = 110, b = 110),
and the color used for the background of the search field was
neutral gray (L = 50, a = 0, b = 0). In the Psi condition, we
only estimated low salience values and fixed the high salience
intensities at (L = 50, a = 110, b = −50) for color and 90 degrees
for orientation. In the LNRM condition, we estimated both low
and high salience intensities from the model.

6.1.3. Procedure
On the first day of the study, the experimenter guided the sub-

ject into a darkened room, whose only source of light came from
the computer used in the experiment. Once seated at the com-
puter, the experimenter explained the informed consent protocol
and demographics survey. While the subject read and completed
these forms on the computer, the experimenter stood on the
other side of a divider to give the subject some privacy but
remained in the room to avoid introducing extraneous light from
outside the room. After the subject indicated that they had com-
pleted the informed consent process, the experimenter loaded
the experiment. At this point, the luminary characteristics of
the display matched those of the rest of the experiment, and
the experimenter explained the task to the subject. After the
subject completed a few practice trials, the experimenter quietly
left the room after confirming that the subject did not have any
questions.

Following the departure of the experimenter, the subject com-
pleted one psychophysical block where the distractors shared the
target’s color and one psychophysical block in which the dis-
tractors shared the target’s orientation, requiring them to make
orientation-only or color-only judgments, respectively. Within
these blocks, 50% of the trials were catch trials, i.e., contained no
targets. The third, final block used the salience levels estimated
from the psychophysical blocks to create distractors that differed
from the target in color and/or orientation according to the DFP.
Each block was preceded by written instructions, example images
of the target and distractors, and a set of practice trials. Ten high
salience practice trials preceded the psychophysical blocks, and
16 practice trials (one for each of the possible trial conditions)
preceded the DFP block. The practice trials provided feedback as
to whether the subject’s response on each trial was correct and
included a brief explanation if it was incorrect.

We assumed that the time needed to fully explain the in-
structions, combined with the informed consent process, was
sufficient for the subject to adapt to the lighting of the room,
but to further ensure that adaptation would not confound our
results, we always administered the orientation psychophysics
block before the color psychophysics block because orientation
judgments should be less sensitive to cone cell adaptation.

On each trial, the words ‘‘Get ready...’’ were presented for
1 s, followed by a field of randomly placed stimuli. The target
was present on exactly half of all trials. If the target was absent,
a distractor replaced it so that there were always 24 objects
displayed. The distractors on a given trial had identical color and
orientation; however, the color and orientation of the distractors
were factorially varied across trials to obtain the salience manip-
ulations needed to calculate a SIC. This resulted in 8 distractor
types:11

• High salience color difference with high salience orientation
difference (HH),

• High salience color with low salience orientation (HL),
• High salience color with target orientation (HA),
• Low salience color with high salience orientation (LH),

11 Note that we did not include AA trials as this would have been a search
array entirely composed of targets.

https://github.com/jhoupt/adaptiveSFT
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• Low salience color with low salience orientation (LL),
• Low salience color with target orientation (LA),
• Target color with high salience orientation (AH),
• Target color with low salience orientation (AL).

Each distractor type was equally likely.
We instructed subjects to determine whether the target was

present ‘‘as quickly and accurately as possible’’. They responded
positively by clicking the left mouse button and negatively by
clicking the right mouse button. If they indicated that the target
was absent, then the screen cleared and advanced to the next
trial after a 1 s delay. If the subject responded that the target was
present, then the stimuli would all change into black outlines of
triangles at their respective positions. The mouse cursor, which
was not normally visible, would appear in the center of the
display, and the subject would have to left click on the trian-
gle that corresponded to where they found the target. We only
used this additional response procedure when scoring accuracy;
all search times reported here reflect the latency of the initial
present/absent response. The trial timed out if no response was
made within 20 s, and these scratched trials were discarded from
analysis.

In the Psi condition, the psychophysical blocks each termi-
nated after the subject completed 50 trials (25 target-present and
25 target-absent) or after 5 min had elapsed, whichever came
first. Whereas Psi adaptively selects the next trial intensity to
use, the LNRM must be fit to choice-RT data post-hoc. Thus in
the LNRM condition, we had subjects first complete a method
of constant stimuli for each psychophysical block and then fit a
model to obtain high and low salience intensities. Through pilot
testing, we learned that using the same stopping criterion as Psi
for the method of constant stimuli did not test enough different
intensities, so we doubled the duration of the psychophysical
blocks in the LNRM condition, terminating each after the subject
completed 5 repetitions of 10 intensities for both present and
absent targets (100 trials) or after 10 min had elapsed, whichever
came first. Because of these disparities, subjects in the Psi con-
dition completed more DFP trials (720 per session) than the
subjects in the LNRM condition (576 DFP trials per session).

In both conditions, only the target-present trials were used
to estimate salience levels. For the LRNM condition, this is not
a problem because the method of constant stimuli specifies the
intensities to use for the distractors on both target-present and
target-absent trials; however, in the Psi condition, the adaptive
algorithm only specifies intensities for the target-present trials.
We were concerned that subjects may be able to use the mag-
nitude of intensity change between trials as a cue for target
presence, so on each target-absent trial we used the intensity
from the last target-present trial plus some normally distributed
random noise independently sampled from N (µ = 0, σ = 5).

On the second day of the study, subjects followed the same
procedure as they had for the first session with one exception. In
place of the previously completed informed consent procedure,
subjects sat quietly at the computer in the darkened room for
five minutes to allow their eyes to adjust. After the experimenter
reviewed the instructions with the subject and verified that they
had no new questions, the subject completed the psychophysical
and DFP blocks as before.

6.2. Results

Subjects completed most of the psychophysical blocks within
the time allotted (Table 1). We present the low salience inten-
sities estimated using Psi in Table 2 and high and low salience
intensities estimated using the LNRM in Table 3. These are the
unique intensities that were used to create the stimuli for each
subject in the DFP.

Table 1
Number of target-present trials completed in each psychophysical block.
Psi Type of judgment

Subject Session Color Orientation

1 1 25 25
2 25 25

2 1 23 11
2 25 16

3 1 25 18
2 25 25

4 1 22 20
2 25 23

LNRM Type of judgment

Subject Session Color Orientation

5 1 32 23
2 50 41

6 1 34 26
2 50 42

7 1 47 31
2 50 50

8 1 50 50
2 50 37

Note. The maximum number of trials that could be completed was 25 and 50
for the Psi and LNRM conditions, respectively.

Table 2
Psi condition stimulus intensities.
Color

Subject Session Low salience High salience

1 1 −25.927 −50
2 −21.656 −50

2 1 −13.007 −50
2 −9.510 −50

3 1 −25.062 −50
2 −21.176 −50

4 1 −7.928 −50
2 −2.822 −50

Orientation

Subject Session Low salience High salience

1 1 81.633 90
2 81.398 90

2 1 57.229 90
2 59.063 90

3 1 70.672 90
2 71.567 90

4 1 65.669 90
2 62.166 90

Note. High salience was fixed for all subjects.

Subjects were very accurate. The worst individual accuracy we
observed in one of the redundant signals conditions (i.e., HH, HL,
LH, LL), which are the critical conditions for a SIC, was 89%. A
Bayesian ANOVA revealed strong evidence for an effect of session
on accuracy (BF = 6.299 × 104), so we breakdown accuracy by
condition and session in Fig. 8. Mean correct RTs reflected our
salience manipulations and were longer for target-absent trials.
We found some evidence against an effect of session on mean RT
(BF = 7.271) but plot them by condition and session in Fig. 9 for
consistency.

In order to interpret the SIC, we must first affirm the assump-
tion that SHH (t) < {SHL (t), SLH (t)} < SLL (t) holds. One way to
do this is with a series of Kolmogorov–Smirnov tests. While we
did not find strict evidence for the above ordering (i.e. we could
not reject the null hypothesis that SHH (t) > {SHL (t), SLH (t)} or
SLL (t) < {SLH (t), SHL (t)}) for any subject, we also did not find
any significant violations of the ordering (i.e. we could not reject
the null hypothesis that SHH (t) < {SHL (t), SLH (t)} and SLL (t) >
{SLH (t), SHL (t)}). In this ambiguous situation, we assume that so
long as the survivor functions are appropriately ordered upon
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Fig. 8. Accuracy for the DFP portion of the study. Error bars indicate standard error of the mean across subjects. H, L, and A indicate trial conditions where the
difference between the target and a particular distractor dimension was high, low, or absent (i.e. identical to the target), respectively. Color dissimilarity always
precedes orientation dissimilarity such that HL indicates the high color salience and low orientation salience condition.

Table 3
LNRM condition stimulus intensities.
Color

Subject Session Low salience High salience

5 1 −25.880 −42.551
2 −12.906 −24.927

6 1 −7.271 −16.585
2 −1.736 −10.918

7 1 −37.097 −52.274
2 −30.642 −45.683

8 1 −9.254 −21.741
2 1.933 −9.414

Orientation

Subject Session Low salience High salience

5 1 70.219 80.717
2 66.350 74.889

6 1 63.206 76.178
2 63.841 71.819

7 1 79.230 88.490
2 84.708 93.614

8 1 72.074 81.446
2 62.374 71.538

visual inspection then any failure to reject the Kolmogorov–
Smirnov null hypothesis is due to the limited number of trials
rather than a real violation of selective influence. To this end,
we inspected each subject’s survivor functions and determined
that we cannot interpret SICs for Subjects 1 and 8 in the target-
present condition and either SIC for Subject 7. We plot the SICs
and corresponding survivor functions for each subject separately
for target present and absent conditions. The results for the Psi

condition may be found in Figs. 10 and 11, and the results for the
LNRM condition may be found in Figs. 12 and 13.

We conducted statistical tests of the SIC and MIC (Table 4).
Following the recommendation of Houpt and Burns (2017), we
use an α of .33. In the target-present condition, Subjects 2, 4,
and 6 had significantly positive SIC deviations from zero (D+

∈

[0.286, 0.369], p ∈ [.003, .026]), non-significant negative SIC
deviations from zero (D−

∈ [0.011, 0.156], p ∈ [.337, .995]),
and significantly positive MICs (ART ∈ [0.223, 0.657], p < .001).
Subject 3’s SIC did not significantly deviate above zero (D+

=

0.103, p = .625) but significantly deviated below zero (D−
=

0.195, p = .183). Their MIC did not significantly deviate from
zero (ART = 0.010, p = .809). Subject 5’s SIC and MIC did not
significantly deviate from zero (D+

= 0.093, p = .743; D−
=

0.123, p = .594; ART = −0.059, p = .927).
In the target-absent condition, Subjects 2, 4, and 5 had signif-

icantly positive SIC deviations from zero (D+
∈ [0.198, 0.598],

p ∈ [.000, .246]), non-significant negative SIC deviations from
zero (D−

∈ [0.022, 0.105], p ∈ [.673, .978]), and significantly
positive MICs (ART ∈ [0.303, 1.250], p ∈ [.000, .068]). Subjects
1 and 3 had non-significant positive SIC deviations from zero
(D+

∈ [0.037, 0.122], p ∈ [.519, .940]) and significant negative
SIC deviations from zero (D−

∈ [0.176, 0.212], p ∈ [.136, .253]).
Subject 3 had an MIC that was significantly different from zero
(ART = −0.056, p = .204) and Subject 1 did not (ART =

0. − 0.020, p = .624). Subjects 6 and 8 did not have SICs or
MICs that significantly deviated from zero (D+

∈ [0.094, 0.111],
p ∈ [.641, .732]; D−

∈ [0.102, 0.153], p ∈ [.432, .694]; ART
∈ [−0.006, 0.089], p ∈ [.473, .825]).
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Fig. 9. Mean search times for correct responses in the DFP portion of the study. Error bars indicate standard error of the mean across subjects. H, L, and A indicate
trial conditions where the difference between the target and a particular distractor dimension was high, low, or absent (i.e. identical to the target), respectively.
Color dissimilarity always precedes orientation dissimilarity such that HL indicates the high color salience and low orientation salience condition.

Table 4
SIC and MIC results.
Psi

Subject Target D+ p D− p ART p Predicted model

1 Present – – – – – – –
Absent 0.122 .519 0.176 .253* −0.020 .624 Parallel-AND

2 Present 0.286 .026* 0.011 .995 0.223 <.001* Parallel-OR
Absent 0.598 <.001* 0.031 .958 1.250 <.001* Parallel-OR

3 Present 0.103 .625 0.195 .183* 0.010 .809 Parallel-AND
Absent 0.037 .940 0.212 .136* −0.056 .204* Parallel-AND

4 Present 0.356 .003* 0.156 .337 0.292 <.001* Parallel-OR
Absent 0.522 <.001* 0.022 .978 0.798 <.001* Parallel-OR

LNRM

Subject Target D+ p D− p ART p Predicted model

5 Present 0.093 .743 0.123 .594 −0.059 .927 Serial-OR
Absent 0.198 .246* 0.105 .673 0.303 .068* Parallel-OR

6 Present 0.369 .008* 0.057 .893 0.657 <.001* Parallel-OR
Absent 0.111 .641 0.153 .432 0.089 .473 Serial-OR

7 Present – – – – – – –
Absent – – – – – – –

8 Present – – – – – – –
Absent 0.094 .732 0.102 .694 −0.006 .825 Serial-OR

Note. D+ and D− are Houpt–Townsend statistics for the positive and negative SIC deviations, respectively. ART is
the Adjusted Rank Transform test statistic for the MIC. Significant p-values are indicated by asterisks (α = .33;
Houpt & Burns, 2017). We have replaced with dashes the values for subjects who violated selective influence to
discourage interpretation of these results.

6.3. Discussion of human results

We conducted a visual search task where the color and ori-
entation of distractors were adaptively chosen for each session
and subject based on the subject’s performance in a preliminary

psychophysical portion of the experiment. One condition used
the Psi psychophysical method (Kontsevich & Tyler, 1999) to
recommend low salience intensities, and the other condition used
the LNRM (Rouder et al., 2015) to estimate low and high salience
intensities based on joint choice-RT distributions.
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Fig. 10. Survivor and SIC functions on target present trials for each subject in the Psi condition. Dashed lines indicate the critical D+ and D− values the SIC must
surpass to reject the null-hypothesis that SIC = 0 with α = .33. Note that we cannot interpret the target-present SIC for Subject 1.

The range of intensities recommended for each group of sub-
jects was consistent across the two psychophysical methods. As
expected, thresholds varied greatly between subjects but rela-
tively little within subjects (i.e. across sessions). The color salience
levels proposed for subjects in the LNRM condition differed across
sessions somewhat more than their counterparts in the Psi condi-
tion, which may reflect a larger change in the time to discriminate
colors compared to the accuracy of such discriminations. The
LNRM would take into account this dimension of learning when
estimating thresholds whereas Psi would not.

We consider two sets of trial conditions when evaluating
accuracy. Participants were very accurate on trials where dis-
tractors differed from the target in both color and orientation
(HH, HL, LH, LL; Fig. 8), which is important because these are
the trials used in the SIC calculation. Accuracy was somewhat
lower for the trials where distractors differed from the target
in only one dimension, particularly for the target-present trials,
which suggests that subjects were more likely to miss the target
than to misidentify it in these more difficult conditions. Subjects
were less accurate in the second session, and although one might

expect accuracy to improve with additional sessions, thresholds
did tend to decrease between sessions. Because these intensities
were estimated from performance at the beginning of a session,
subjects likely improved since the first psychophysical blocks,
resulting in higher accuracy than expected for the first session.
By the start of the second session, subjects were well practiced
such that the thresholds estimated were lower but accuracy did
not subsequently improve as before.

Mean RTs followed the general pattern we expected, increas-
ing as the perceptual difference between distractors and the
target decreased. Participants were faster when the target was
present and when they could exploit color dissimilarity.

The SIC and MIC results largely support parallel processing of
color and orientation during visual search, which is consistent
with what we have previously found for color and shape (Gla-
van et al., 2019). In the target-present condition, Subjects 2,
4, and 6 demonstrated results consistent with self-terminating
parallel processing. Subject 3’s SIC results suggested that they
used exhaustive parallel processing, although if this was the case
then we would expect their MIC to be significantly negative.
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Fig. 11. Survivor and SIC functions on target absent trials for each subject in the Psi condition. Dashed lines indicate the critical D+ and D− values the SIC must
surpass to reject the null-hypothesis that SIC = 0 with α = .33.

It may instead be the case that they used an exhaustive serial
strategy, and we simply failed to detect the positive SIC deviation.
Similarly, Subject 5’s results are consistent with self-terminating
serial processing, but this may also be a failure to reject caused
by insufficient power.

In the target-absent condition, Subject 3 demonstrated results
consistent with exhaustive parallel processing, while Subjects 2,
4, and 5 appeared to use self-terminating parallel processing.
A self-terminating stopping rule is bemusing considering that
subjects must fully process all color and orientation informa-
tion in order to respond accurately when the target was absent.
Workload capacity analysis (Townsend & Nozawa, 1995) may
resolve this discrepancy by revealing facilitation between pro-
cessing channels (Eidels et al., 2011; Glavan et al., 2019). Subject
1’s SIC results suggested that they used exhaustive parallel pro-
cessing, but, like Subject 3 above, their MIC was not significantly
negative as we would expect, leading us to suspect that maybe
some subjects used an exhaustive serial strategy. Subjects 6 and
8’s SICs and MICs did not differ from zero, which is consistent
with self-terminating serial processing, but, again because we

expect exhaustive processing to be necessary to be accurate when
the target is absent, these non-significant results would likely
change with additional trials.

This study was based on relatively few participants because
our main focus was on demonstrating the adaptive SFT methods.
Hence, we caution readers against putting too much credence in
these conclusions. A larger study should be conducted to more
comprehensively address the research question introduced here.
Not only did we restrict the overall experiment time, but because
the Psi method is more efficient than the LNRM approach, we had
to collect more psychophysical trials in the LNRM condition than
the Psi condition. Nevertheless, the number of psychophysical
trials we actually collected for the LNRM condition (5 repetitions
of 10 levels) compared to our recommended minimum number of
trials (50 repetitions of 10 levels) was proportionally much lower
than the number used for the Psi condition (25 trials compared
to the recommended minimum of 100). Therefore, the quality
of the stimulus levels proposed by the LNRM may have been
more impacted by the time constraint than those proposed by
Psi. Additionally, the extra psychophysical trials in the LNRM
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Fig. 12. Survivor and SIC functions on target present trials for each subject in the LNRM condition. Dashed lines indicate the critical D+ and D− values the SIC must
surpass to reject the null-hypothesis that SIC = 0 with α = .33. Note that we cannot interpret the target-present SIC for Subjects 7 and 8.

condition meant less time available to collect DFP data. Subjects
in the Psi condition completed 90 trials per salience condition
over two one-hour sessions, compared to only 72 trials for the
LNRM condition. Therefore, the statistical tests for the SIC and
MIC had less statistical power for the LNRM condition than the
Psi condition. When one also considers that a serial-OR model
is effectively the null hypothesis of the SIC statistical tests, it
becomes clear that differences in the human results between
adaptive method conditions may be because the LNRM method
is less robust to the practical constraints we imposed than due to
true differences in architecture between the groups.

The variability between adaptive methods that we found in
the human study highlights a limitation of the current approach.
Although choosing efficient stimulus properties may improve the
power of the DFP experiment, it is not the sole contributing factor.
The number of samples used to estimate each SIC distribution also
has a major impact. Unfortunately, when the overall experiment
time is limited, including an adaptive routine like the ones we
propose will reduce the number of DFP trials that can be collected
within a given session. Furthermore, the tradeoff between effect

size and number of samples may not be easy to estimate a priori;
a preliminary power analysis may be necessary to determine
the appropriate number of DFP trials. From there, the choice
between accuracy-based and joint RT–accuracy methods can be
made depending on remaining constraints.

7. General discussion

Understanding the fundamental characteristics of how a cog-
nitive system combines multiple sources of information is critical
for understanding that cognitive system. SFT provides a frame-
work for formalizing and examining those characteristics. SFT
methods are both powerful and general because they are based
on formal mathematical derivations that do not rely on paramet-
ric or distributional assumptions. Unfortunately, SFT is often out
of reach for experimentalist hoping to apply these methods in
their domains. One major hindrance to applying SFT is deter-
mining the stimulus characteristics that will lead to interpretable
data.
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Fig. 13. Survivor and SIC functions on target absent trials for each subject in the LNRM condition. Dashed lines indicate the critical D+ and D− values the SIC must
surpass to reject the null-hypothesis that SIC = 0 with α = .33. Note that we cannot interpret the target-absent SIC for Subject 7.

In this paper, we demonstrated two approaches to finding
stimulus salience levels that are likely to lead to clean and inter-
pretable estimates of the SIC across individuals. In keeping with
the fundamental strengths of SFT, the methods we proposed are
general, making only minimal assumptions about the stimulus
dimensions to which they are applied. They are also applicable
at the individual subject level, avoiding the pitfalls inherent in
focusing exclusively on group-level data (Estes, 1956).

The first method we proposed for determining the appropriate
stimulus salience levels was Kontsevich and Tyler’s (1999) Psi
method, which focuses solely on a participant’s accuracy. We pro-
posed that the appropriate setting for the low salience stimulus
level is the level at which a subject should achieve 90% accuracy,
under the assumption that accuracy is negatively correlated with
difficulty, and hence response times. For the high salience stimu-
lus level, we suggested using the maximum salience, when such
a value exists, or a level that is otherwise phenomenologically
‘‘easy’’, leading to maximal accuracy. Although we did not explore
alternatives for setting the high salience level with Psi in this
paper, there are other options. For example, one could choose

a stimulus level that corresponded with an even higher level
of accuracy on the psychometric function (e.g. 95%) or choose a
constant multiple of the low salience stimulus intensity.

From a series of simulations we found that reasonably stable
individual stimulus thresholds could be obtained within approxi-
mately 100–150 trials using the Psi method. Without good priors,
we recommend a minimum of 100 trials per stimulus dimen-
sion. Next, we simulated a fully adaptive DFP study that used
the Psi method to estimate individualized stimulus salience lev-
els. To do so, we randomly selected sets of parameters for a
drift–diffusion model that resulted in human-like choice and RT
performance, with each set of parameters representing a unique
individual. We then determined the low salience level for each
‘‘individual’’ on both of two dimensions, putatively color and
orientation. We used those stimulus intensities and the maxi-
mum physical stimulus intensities to generate responses from
correspondingly parameterized DDMs constructed from specific
combinations of architecture and stopping rule. The resulting SIC
functions matched the patterns predicted by the chosen architec-
ture and stopping rule quite well, indicating promise for the Psi
method in the experimental design pipeline.
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Finally, we applied the Psi method for determining stimulus
salience levels to human observers. Following the same proce-
dure used for the simulations, we first ran participants through
sequences of trials following the Psi method to estimate the color
for which a participant should achieve 90% accuracy on color
target detection and the orientation of a line for which that
participant should achieve 90% accuracy on orientation target
detection. Because each subject completed these trials on each
day, we were able to set low salience target values that were
specific to each participant on each day of the experiment. Using
those low salience target levels along with a predetermined high
salience target level, we created individualized stimuli for the
DFP by factorially combining the stimulus levels across color and
orientation. While the approach did not work for all participants,
many participants’ data indicated clear ordering of survivor func-
tions according to stimulus salience levels, and clearly identifiable
SIC shapes.

As an alternative to the accuracy-only method, we also pro-
posed a method based on the log-normal race model (Rouder
et al., 2015) for adapting jointly to RT and accuracy. Like the
accuracy-based approach, we first examined the LNRM through
simulations where data were generated from a DDM. The first
simulation focused on the precision of parameter estimates as a
function of the number of trials. Next, we examined the LNRM
in the context of a DFP paradigm by using the stimulus intensity
levels indicated by the LNRM for the high and low salience levels
on two stimulus dimensions. To examine the robustness of the
approach to individual variation, we randomly perturbed the
parameters to generate a variety of choice–RT profiles. Once we
completed simulation testing, we then applied the approach with
human participants.

For the joint RT–accuracy approach, we used the method of
constant stimuli and fit the LNRM post-hoc rather than develop-
ing an online adaptive procedure. The method of constant stimuli
can vary in its extent based on the number of stimulus salience
levels tested and the number of trials at each stimulus level. As
with most models, more data yielded more precise parameter
estimates, but we did not explore the trade-offs in precision
between using more salience levels or using more trials per level.
We used ten salience levels to cover a wide range of potential
performance patterns. Using data generated from the DDM, we
estimated posterior highest density intervals as a function of the
number of trials at each of those ten levels. When relatively vague
priors were used, we found that the posterior intervals reached
asymptote at around 100 trials per level. This would suggest that
in the absence of prior information, no more than 1000 trials (100
by ten levels) are necessary. Based on the simulation results, we
recommend a minimum of 50 trials per level (500 total trials)
per dimension. While this is a large amount of trials, we see it
as less of a cost than having to throw out participants’ data due
to ineffective salience manipulations or insufficient accuracy. In
some cases, this may not result in a practical improvement in data
collection time and cost. We are currently developing adaptive
methods in line with Psi and other approaches (Kim, Pitt, Lu, &
Myung, 2017; Kim, Pitt, Lu, Steyvers, & Myung, 2014) for joint
RT–accuracy modeling, which we hope will further reduce the
recommended number of trials.

Following the parameter convergence simulations, we fit the
LNRM to responses generated from a DDM that was run through a
method of constant stimuli to determine salience levels for a DFP
study. Like the values chosen based on the Psi method, the high
and low salience levels extracted from the LNRM yielded clear
survivor orderings and SIC shapes that matched the generating
architecture and stopping rule. Furthermore, when we generated
data from a collection of parameter sets for the DDM, we found
that the LNRM-based approach was robust to variation across
individuals in the generated performance profiles.

When applied with human subjects, the LNRM approach
yielded similar outcomes to the Psi approach. For some partic-
ipants, there was not a clear separation of survivor functions
across salience levels. For those that did show a clear separation,
the resulting SICs were reasonably identifiable. Although the
sample size is small, these results seem to indicate an advantage
for the Psi approach. This is likely due to the inefficiency of the
method of constant stimuli used to inform the LNRM; in addition
to collecting fewer trials per salience level, this method takes
longer, which means fewer DFP trials can be collected in the
same amount of experiment time. Another possible explanation
may be non-stationarity in the participants’ performance, either
from learning or strategy shifts. Nevertheless, it was clear that
different subjects needed drastically different salience levels to
achieve similar performance, and hence, choosing a single set of
salience levels for all participants would have yielded even more
problematic results.

In the human study, we emphasized practicality, using far
fewer trials than recommended by our simulation results. This
likely explains why we did not produce selective influence across
all subjects. Furthermore, we know from our simulations that the
joint RT–accuracy approach requires many more trials than the
accuracy-only approach because of its reliance on the method
of constant stimuli. This likely explains why we found more
violations of selective influence for the LNRM condition than the
Psi condition. In other words, these results are to be expected
given our simulation findings. That being said, even in these
sub-optimal conditions the techniques we developed did not
catastrophically fail, and compliance rates were fairly similar to
those we have found with the traditional ‘‘pilot and test’’ method,
which suggests they are more robust than one might expect
given the parameter convergence simulations. In the future, it
may be worth investing a day or two in collecting nothing but
psychophysical data so as to establish a strong group-level prior
for the stimuli/task being used. Such an informative prior could
drastically reduce the number of trials needed to adapt the stim-
uli to individuals on days on which the full DFP is administered.
We look forward to pioneering such hierarchical methods within
the SFT framework.

8. Conclusion

The process of finding the right salience levels is one of the
more complex and resource intensive aspects of the SFT method-
ology. The traditional approach, which relies on extensive pilot
testing for determining a single set of salience levels at the group
level, can lead to results wherein a large number of participants’
data is unusable because either the group-set salience levels were
too difficult, and accuracy was too low, or the levels did not yield
sufficiently different RTs across salience conditions. In this paper,
we investigated two approaches to determining individualized
salience levels. The first approach was based on the Psi method,
a well established method in the psychophysics literature for
estimating the mapping between stimulus salience and accuracy.
The second approach was a novel approach relying on the LNRM
for estimating the mapping between stimulus salience and both
RT and accuracy. We hope that these approaches will contribute
to making the powerful SFT methodology more accessible to a
wider range of experimental psychologists and more applicable
to a wider range of domains.

References

Appelle, S. (1972). Perception and discrimination as a function of stimulus
orientation: the ‘‘oblique effect’’ in man and animals. Psychological Bulletin,
78(4), 266.

http://refhub.elsevier.com/S0022-2496(19)30136-1/sb1
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb1
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb1
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb1
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb1


20 J.J. Glavan, E.L. Fox, M. Fifić et al. / Journal of Mathematical Psychology 92 (2019) 102278

Blaha, L. M., Houpt, J. W., McIntire, J. P., Havig, P. R., & Morris, M. B. (manuscript
in preparation). Characterizing stereoscopic disparity information processing
with systems factorial technology.

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice
response time: Linear ballistic accumulation. Cognitive Psychology, 57(3),
153–178.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., et
al. (2017). Stan: A probabilistic programming language. Journal of Statistical
Software, 76(1).

Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing conclusions from choice
response time models: A tutorial using the linear ballistic accumulator.
Journal of Mathematical Psychology, 55(2), 140–151.

Eidels, A., Houpt, J. W., Altieri, N., Pei, L., & Townsend, J. T. (2011). Nice guys
finish fast and bad guys finish last: Facilitatory vs. inhibitory interaction in
parallel systems. Journal of Mathematical Psychology, 55(2), 176–190.

Estes, W. K. (1956). The problem of inference from curves based on group data.
Psychological Bulletin, 53(2), 134.

Fifić, M., & Little, D. R. (2017). Stretching mental processes: An overview of
and guide for SFT applications. In D. R. Little, N. Altieri, M. Fifić, & C.-
T. Yang (Eds.), Systems factorial technology: A theory driven methodology for
the identification of perceptual and cognitive mechanisms (pp. 27–51). Elsevier.

Fox, E. L., & Houpt, J. W. (2016). The perceptual processing of fused multi-spectral
imagery. Cognitive Research: Principles and Implications, 1(1), 31.

Glavan, J. J., Haggit, J. M., & Houpt, J. W. Temporal organization of color and shape
processing during visual search. Attention, Perception, & Psychophysics,
Special issue in honor of the contributions of Anne Treisman, in press.

Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., & Townsend, J. T.
(2014). Systems factorial technology with r. Behavior Research Methods, 46(2),
307–330.

Houpt, J. W., & Burns, D. M. (2017). Statistical analyses for systems factorial tech-
nology. In D. R. Little, N. Altieri, M. Fifić, & C.-T. Yang (Eds.), Systems factorial
technology (pp. 55–67). San Diego: Elsevier, http://dx.doi.org/10.1016/B978-
0-12-804315-8.00005-7, URL http://www.sciencedirect.com/science/article/
pii/B9780128043158000057.

Houpt, J. W., & Fifić, M. (2017). A hierarchical bayesian approach to distin-
guishing serial and parallel processing. Journal of Mathematical Psychology,
79, 13–22.

Houpt, J. W., MacEachern, S. N., Peruggia, M., & Townsend, J. T. (2016).
Semiparametric bayesian approaches to systems factorial technology. Journal
of Mathematical Psychology, 75, 68–85.

Houpt, J. W., & Townsend, J. T. (2010). The statistical properties of the survivor
interaction contrast. Journal of Mathematical Psychology, 54(5), 446–453.

Houpt, J. W., & Townsend, J. T. (2011). An extension of SIC predictions to the
Wiener coactive model. Journal of Mathematical Psychology, 55(3), 267–270.

Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down
method. Attention, Perception, and Psychophysics, 49(3), 227–229.

Kim, W., Pitt, M. A., Lu, Z.-L., & Myung, J. I. (2017). Planning beyond the next
trial in adaptive experiments: A dynamic programming approach. Cognitive
Science, 41(8), 2234–2252.

Kim, W., Pitt, M. A., Lu, Z.-L., Steyvers, M., & Myung, J. I. (2014). A hierarchical
adaptive approach to optimal experimental design. Neural Computation,
26(11), 2465–2492.

Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of
psychometric slope and threshold. Vision Research, 39(16), 2729–2737.

Levitt, H. (1971). Transformed up-down methods in psychoacoustics. The Journal
of the Acoustical society of America, 49(2B), 467–477.

Leys, C., & Schumann, S. (2010). A nonparametric method to analyze interactions:
The adjusted rank transform test. Journal of Experimental Social Psychology,
46(4), 684–688.

Molenaar, D., Tuerlinkcx, F., & van der Maas, H. (2015). Fitting diffusion item
response theory models for responses and response times using the r
package diffirt. Journal of Statistical Software, 66, 1–34.

Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W., & Forstmann, B. U.
(2012). Bias in the brain: a diffusion model analysis of prior probability and
potential payoff. Journal of Neuroscience, 32(7), 2335–2343.

Murphy, P. R., Vandekerckhove, J., & Nieuwenhuis, S. (2014). Pupil-linked arousal
determines variability in perceptual decision making. PLoS Computational
Biology, 10(9), e1003854.

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers
in Neuroinformatics, 2, 10.

R Core Team (2017). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing, URL https://www.R-
project.org/.

Rammsayer, T. H. (1992). An experimental comparison of the weighted up-down
method and the transformed up-down method. Bulletin of the Psychonomic
Society, 30(5), 425–427.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59.
Reinach, S. (1965). A nonparametric analysis for a multi-way classification with

one element per cell. South African Journal of Agricultural Science, 8(4),
941–960.

Rouder, J. N., Province, J. M., Morey, R. D., Gomez, P., & Heathcote, A. (2015).
The lognormal race: A cognitive-process model of choice and latency with
desirable psychometric properties. Psychometrika, 80(2), 491–513.

Ruzon, M. Lab2rgb, https://www.mathworks.com/matlabcentral/fileexchange/
24010-lab2rgb/ . Version 1.0.0.

Stone, M. (1960). Models for choice-reaction time. Psychometrika, 25(3), 251–260.
Taylor, M., & Creelman, C. (1967). Pest: Efficient estimates on probability

functions. The Journal of the Acoustical Society of America, 41(4A), 782–787.
Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary

perception: An investigation of parallel, serial, and coactive theories. Journal
of Mathematical Psychology, 39(4), 321–359.

Watson, A. B. (2017). Quest+: A general multidimensional bayesian adaptive
psychometric method. Journal of Vision, 17(3), 10.

Watson, A. B., & Pelli, D. G. (1983). Quest: A bayesian adaptive psychometric
method. Perception and Psychophysics, 33(2), 113–120.

http://refhub.elsevier.com/S0022-2496(19)30136-1/sb3
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb3
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb3
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb3
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb3
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb4
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb4
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb4
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb4
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb4
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb5
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb5
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb5
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb5
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb5
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb6
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb6
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb6
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb6
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb6
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb7
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb7
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb7
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb8
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb8
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb8
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb8
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb8
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb8
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb8
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb9
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb9
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb9
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb11
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb11
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb11
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb11
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb11
http://dx.doi.org/10.1016/B978-0-12-804315-8.00005-7
http://dx.doi.org/10.1016/B978-0-12-804315-8.00005-7
http://dx.doi.org/10.1016/B978-0-12-804315-8.00005-7
http://www.sciencedirect.com/science/article/pii/B9780128043158000057
http://www.sciencedirect.com/science/article/pii/B9780128043158000057
http://www.sciencedirect.com/science/article/pii/B9780128043158000057
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb13
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb13
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb13
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb13
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb13
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb14
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb14
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb14
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb14
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb14
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb15
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb15
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb15
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb16
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb16
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb16
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb17
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb17
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb17
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb18
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb18
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb18
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb18
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb18
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb19
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb19
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb19
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb19
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb19
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb20
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb20
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb20
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb21
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb21
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb21
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb22
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb22
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb22
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb22
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb22
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb23
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb23
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb23
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb23
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb23
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb24
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb24
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb24
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb24
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb24
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb25
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb25
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb25
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb25
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb25
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb26
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb26
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb26
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb28
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb28
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb28
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb28
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb28
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb29
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb30
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb30
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb30
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb30
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb30
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb31
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb31
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb31
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb31
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb31
https://www.mathworks.com/matlabcentral/fileexchange/24010-lab2rgb/
https://www.mathworks.com/matlabcentral/fileexchange/24010-lab2rgb/
https://www.mathworks.com/matlabcentral/fileexchange/24010-lab2rgb/
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb33
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb34
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb34
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb34
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb35
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb35
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb35
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb35
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb35
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb36
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb36
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb36
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb37
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb37
http://refhub.elsevier.com/S0022-2496(19)30136-1/sb37

	Adaptive design for systems factorial technology experiments
	Introduction
	Accuracy focused approaches to determining salience levels
	Joint RT–accuracy approaches to determining salience levels
	Summary of our approach
	Simulations
	Parameter convergence
	Psi
	LNRM

	DFP simulation study
	Psi
	LNRM

	Discussion of simulations

	Demonstration with human subjects
	Method
	Participants
	Materials
	Procedure

	Results
	Discussion of human results

	General discussion
	Conclusion
	References


